

Predicting and Verifying Maternal- Fetal Exposure to Drugs during Pregnancy

Jash Unadkat, Ph.D. Milo Gibaldi Endowed Professor Dept. of Pharmaceutics, School of Pharmacy Univ. of Washington, Seattle, WA

https://sop.washington.edu/people/jashvant-unadkat/ https://sop.washington.edu/uwrapt https://sop.washington.edu/uwpkdap

Background

- When a mother takes a drug, the fetus is de-facto exposed to the drug
- Neither feasible nor desirable to determine maternal-fetal exposure to all drugs or natural products/supplements taken by pregnant women
- Therefore, to inform fetal risks, we have developed a systems/mechanisitic pharmacology approach to predict maternal-fetal exposure to drugs throughout pregnancy
- Elucidate the extent of changes in physiology (e.g. blood flow) and pharmacology (e.g. drug metabolism and transport) for model drugs and then generalize to other drugs
- This approach is based on Physiologically Based
 Pharmacokinetic (PBPK) modeling and simulations

What Determines Fetal Drug Exposure?

- 1. Maternal drug conc.:
 - pregnancy produces many physiological changes (e.g. ↓ or ↑ in drug metabolism) that affect drug disposition
- 2. Transport (influx or effux) and/or diffusion across the placenta:
 - The placenta is richly endowed with influx and efflux transporters (e.g. P-glycoprotein, BCRP etc.)
- 3. Placental/fetal metabolism:
 - Important for some drugs

W UNIVERSITY of WASHINGTON

Pronounced Decrease in Maternal Expsoure to Indinavir, a HIV Drug, in <u>Third Trimester (T3)</u> Pregnant Women

 Indinavir AUC_{0-8h} is <u>~30% of</u> antepartum AUC (3-fold higher oral CL) vs. postpartum

• Indinavir is a CYP3A and Pgp substrate.

 Based on these data, FDA recommended that administration of indinavir alone is NOT recommended during pregnancy \mathbf{W} UNIVERSITY of WASHINGTON

CYP3A Activity is Induced during Pregnancy

Unbound metabolic clearance of midazolam to 1'-OH midazolam

 Increase in hepatic and not intestinal CYP3A4/5 activity

Hebert MF.. Unadkat JD et al., Clin Pharmacol Ther. 2008

ASCPT 2019

Changes in In Vivo Hepatic Enzyme Activity During Pregnancy Measured by Phenotyping Studies

Metabolizing enzymes	Enzymatic activity changes during pregnancy	Substrates	
CYP 450s	↓ CYP1A2	Caffeine	
	↑ CYP2A6	Nicotine	
	↑ CYP2C9	Phenytoin	
	↓ CYP2C19	Proguanil	
	↑ CYP2D6	Metoprolol, Dextromethorphan	
	↑ CYP3A4	Midazolam	
	↑ CYP2B6	Methadone	
UCTo	↑UGT 1A1	Labetalol	
UGIS	↑UGT 1A4	Lamotrigine	

W UNIVERSITY of WASHINGTON

Can Maternal Disposition of CYP-Cleared Drugs be Accurately Predicted Using PBPK M&S?

ASCPT 2019

Verification of m-PBPK model

<u>UNIVERSITY of</u> WASHINGTON

Our m-PBPK Model Successfully Predicted the Disposition of Several CYP3A-cleared Drugs during T3 - Based on Midazolam Data

- Based on midazolam data, our m-PBPK model successfully predicted the 3rd trimester (T3) disposition of two predominantly CYP3A-cleared drugs (i.e. nifedipine and indinavir)
- This induction is hepatic rather than intestinal
- Human hepatocyte studies suggest that CYP3A enzymes are equally induced throughout pregnancy

Summary

- Our m-PBPK model successfully predicted the third trimester maternal disposition of many CYP-metabolized drugs including theophylline and glyburide.
- The model needs to be verified at earlier gestational ages once such data become available.

Expansion of m-PBPK to predict fetal drug exposure through a m-f- PBPK model

 Verification of such a model can be done ONLY at term when umbilical plasma concentrations can be obtained

Maternal-Fetal-PBPK (m-f-PBPK) structure

Figure 5 A schematic representation of the pregnancy physiologically based pharmacokinetic model (PBPK) model. The PBPK model is an extension of the Simcyp 13-compartment full-PBPK model, and includes a lumped compartment to represent placental-fetal organs including the fetus, placenta, and the amniotic fluid. Reproduced from Lu et al. 2012.¹³

Ke et al 2012

Contains fetal organs that are important for fetal drug disposition Zhang et al. DMD 2017

ASCPT 2019

W UNIVERSITY of WASHINGTON

m-f PBPM Model Verification using passive diffusion drugs: Theophylline and Zidovudine (AZT)

Tissue/Membrane Localization of Drug Transporters

ASCPT 2019

2010.

Placental P-gp Excludes P-gp Substrates from the Fetus

Maternal-Fetal-PBPK (m-f-PBPK) structure

Figure 5 A schematic representation of the pregnancy physiologically based pharmacokinetic model (PBPK) model. The PBPK model is an extension of the Simcyp 13-compartment full-PBPK model, and includes a lumped compartment to represent placental-fetal organs including the fetus, placenta, and the amniotic fluid. Reproduced from Lu *et al.* 2012.¹⁹

Zhang et al. DMD 2017

Ke et al 2012

 \mathbf{W} university of washington

The Abundance of Placental Transporters (pmole/g placenta) Changes with Gestational Age

ASCPT 2019

Summary

- Our novel maternal-fetal PBPK model well-predicted the maternal-fetal disposition (at term) of drugs that passively diffuse across the placenta
- Placenta drug transport and/or fetoplacental metabolism may modulate fetal drug exposure to a significant extent
- These processes can be incorporated into the model once proteins that metabolize or transport drugs are quantified by LC-MS/MS in the placenta and fetal liver of different gestational ages (in progress)
- Once available, our m-f-PBPK will be verified using data obtained at term of drugs that are transported or metabolized by the placenta

Acknowledgement

Unadkat lab contributors

- Faye Zhang
- ✤ Marjorie Imperial
- ✤ Alice (Ban) Ke
- Gabriela Patilea-Vrana
- Olena Anoshchenko

Collaborators

- UWPKDAP faculty
- PACTG team
- Ping Zhao (FDA)
- Srikanth Nallani (FDA)
- Amin Rostami-Hodjegan
 University of Manchester, UK

Masoud Jamei, Gaohua Lu and Janak Wedagedera (SimCYP[®]Ltd,UK) Bhagwat Prasad, Qingcheng Mao, Joanne Wang

Data Generously Supplied By:

- William J. Jusko, SUNY, Buffalo
- Timothy Tracy, University of Kentucky
- Uwe Fuhr, University of Cologne, Cologne, Germany
- Mia Wadelius, Uppsala University, Uppsala, Sweden
- Supported by NIH P01 DA032507, P50HD44404 and a grant from FDA's Office of Women's Health and SimCYP visiting fellowship awarded to Alice Ke.

W UNIVERSITY of WASHINGTON

Univ. of WA Health Sciences

ASCPT 2019

Populating m-f-PBPK model with Physiological

Parameters

Table 1: Key fetal physiological parameters

Parameter (!t-)	F1-3	P.f.	Courts	I	
Maternal pl blood flow	Fetal total gut volum (mL)	- 54.3 + 8.90GA - 0.479GA ² + 0.00880	Nagata, Koyanagi et 1990; GA ³ Parulekar 1991; Archie. Collins et al.	al. 2006: 50 -	
Fetal serum (mg/dL)	Fetal kidney v((mL)	Fetal portal vein blood flow (L/h)	0.714 + 0.0489GA + 0.0008GA ² (R ² = 1.00; GA: 20-38 weeks)**	Bellotti, Pennati et al. 2004; Haugen, Kiserud et al. 2004; Kessler, Rasmussen et al. 2008	
Fetal serum glycoproteii (mg/dL)		Fetal brain blood flow (mL/min)	5.56e ^{0.0921GA} (R ² = 0.9999; GA: 10-20 weeks) [†]	Rudolph AM 1971; Kenny, Plappert et al. 1986	
Fetal brain 1 (mL)	Fetal umbilical flow (L/h)	Fetal kidney blood flow (mL/min)	2.18e ^{0.0865GA} (R ² = 0.707; GA: 10-41 weeks) ⁺	Rudolph AM 1971; Kenny, Plappert et al. 1986; Veille, Hanson et al. 1993	
	Ductus <u>venos</u> flow (L/h)	Fetal glomerular filtration clearance (L/h)	$(R^2 = 0.69; GA: 23-40$ weeks) ⁺⁺	Arant 1978; Hansen, Oh et al. 1983; Coulthard 1985; van den Anker,de Groot et al. 1995	

Many of fetal physiological parameters have not been measured at early gestational age (i.e. before week 20) Zhang et al., DMD 2017 \mathbf{W} UNIVERSITY of WASHINGTON

Our m-PBPK Model Successfully Predicted Steady-State PK of Theophylline During T3 -Based On Caffeine Data

Ke AB et al., Drug Metab Dispos: 2013.

Gardner et al., Eur J Clin Pharmacol 1987 (n=10) $\mathbb W$ UNIVERSITY of WASHINGTON

Our m-PBPK model Successfully Predicted Disposition of Drugs Cleared by Multiple Enzymes e.g. Glyburide - CYP3A4 (~50%), CYP2C9 (~30%) and CYP2C19 (~20%)

 Hepatic OATP1B1 or 2B1 activity was assumed to remain constant throughout pregnancy.
 Ke AB et al., Brit J Clin Pharmaco: 2013 ASCPT 2019

APRIL 13, 2014

In the US, 1 in 5 pregnant women are prescribed and take narcotic analgesics

SCIENCE

Surge in Narcotic Prescriptions

for Pregnant Women

By <u>CATHERINE SAINT LOUIS</u>

Maternal Exposure To Some Drugs is Profoundly Changed During Pregnancy: Indinavir, a HIV drug

Unadkat JD, et al., Antimicrob Agents Chemother. 2007 51:783-6.

Recommended Cmin is 150–800 ng ml-1

Can Maternal Disposition of CYP-Cleared Drugs be Accurately Predicted During Third Trimester (T3)?

- A maternal-fetal PBPK model developed in collaboration with Simcyp
- Populated with gestational-age dependent changes in physiological changes (e.g. tissue blood flow, plasma protein conc.)
- Populated with the third trimester (T3) changes in CYP activity using phenotyping data
- Predicted the T3 disposition of other drugs cleared by these CYP enzymes

Site of CYP3A Induction: hepatic or intestinal or both?

- PBPK M&S demonstrated that 90-100% increase in hepatic CYP3A activity ALONE could universally explain the AUC changes of all three CYP3A substrates, midazolam, nifedipine, indinavir
- Hepatic rather than intestinal CYP3A induced by pregnancy
- This conclusion was supported by transgenic mice expressing the CYP3A promoter-luciferase consruct Ke et al. CPT: Pharmacometrics & Systems Pharmacology, 2012

Challenges

- Phenotyping extent of changes in metabolic enzymes and transporter activity earlier in pregnancy (1st and 2nd trimester)
- Verification of model predictions using independent data sets for both maternal and fetal drug exposure
- How does disease affect maternal-fetal drug exposure (e.g. gestational diabetes, preecmplasia etc.).

Pregnant Women and their Fetuses are Therapeutic Orphans

- About 82% of pregnant women ingest one or more drugs during pregnancy despite:
 - Lack of data on the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs in pregnant women.
 - Changes in PK/PD of drugs during pregnancy
- Therefore, drugs are administered to pregnant women/fetuses off-label
 Mitchell et al, Am J Obstet Gynecol. 2011